Ion source research and development at University of Jyväskylä: Studies of different plasma processes and towards the higher beam intensities.
نویسندگان
چکیده
Several ion source related research and development projects are in progress at the Department of Physics, University of Jyväskylä (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radiofrequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI.
منابع مشابه
Ion Beam Cocktail Development and Ecr Ion Source Plasma Physics Experiments at Jyfl*
The accelerator based experiments at JYFL (University of Jyväskylä, Department of Physics) range from basic research in nuclear physics to industrial applications. A substantial share of the beam time hours is allocated for heavy ion beam cocktails, used for irradiation tests of electronics. Producing the required ion beam cocktails has required active development of the JYFL ECR ion sources. T...
متن کاملPower efficiency improvements with the radio frequency H⁻ ion source.
CW 13.56 MHz radio frequency-driven H(-) ion source is under development at the University of Jyväskylä for replacing an existing filament-driven ion source at the MCC30/15 cyclotron. Previously, production of 1 mA H(-) beam, which is the target intensity of the ion source, has been reported at 3 kW of RF power. The original ion source front plate with an adjustable electromagnet based filter f...
متن کاملInfluence of Ni Deposition and Subsequent N+ Ion Implantation at Different Implantation Energies on Nano-Structure and Corrosion Behavior of 316 Stainless Steels
Nickel films of 300 nm thickness were deposited by electron beam evaporation at room temperature on 316 stainless steels. Corrosion studies of Ni coated 316 SS have been performed after N+ ion implantation at different energies of 20, 40, 60 and 80 keV. The structure and surface morphology of the films were evaluated using X-ray diffraction (XRD), atomic force microscope (AFM) an...
متن کاملApplication of 3D code IBSimu for designing an H−/D− extraction system for the Texas A&M facility upgrade
A three dimensional ion optical code IBSimu is being developed at the University of Jyväskylä. So far the plasma modelling of the code has been restricted to positive ion extraction systems, but now a negative ion plasma extraction model has been added. The plasma model has been successfully validated with simulations of the Spallation Neutron Source (SNS) ion source extraction both in cylindri...
متن کاملInfluence of nitrogen ion implantation on the nanostructure and corrosivity of Ni/stainless steel substrates
Ion implantation is a surface modification technology to produce new material on the surface by impingement of high energy ions from the ion accelerator. In this work, AISI 304 stainless steels were coated with 90 nm Ni film by electron beam deposition and implanted by a flow of 5×1017 N cm−2 at 400 K temperature with different implantation energies of 10, 20, 30 and 40 keV. The prepared sample...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Review of scientific instruments
دوره 87 2 شماره
صفحات -
تاریخ انتشار 2016